The case:

A 12-year-old boy presented to the spine clinic with a significant spinal deformity.

Figure 1: Pre- (A) and postoperative (B) lateral radiographs of the thoracolumbar spine.

Your diagnosis?
Pott’s disease, or tuberculous spondylitis, is a consequence of the hematogenous spread of *Mycobacterium tuberculosis*.\(^1\) Tuberculosis continues to be the world’s most lethal and prevalent infectious disease, with >3 million deaths annually, and spinal tuberculosis accounts for approximately 5% of all tuberculosis cases.\(^2-4\) An increasing incidence, likely resulting from an aging population, is found in association with acquired immune deficiency syndrome (AIDS) and increased immigration.

The presentation of Pott’s disease depends on the stage of the disease, the affected location, and the presence of complications. Pulmonary involvement is typically the primary focus, with secondary involvement causing destruction of the vertebrae and intervertebral disks and gross spinal deformity. In addition, prevertebral and paravertebral abscesses can form.\(^5\)

The traditional treatment approach involved surgical intervention for debridement of the abscess, reconstruction of the deformity, and protection of the neurological elements. With advanced antibiotic regimens, the disease can be controlled and cured prior to the advent of the osteolytic spinal deformity.\(^5\)

Pathogenesis

When *Mycobacterium tuberculosis* involves the spine, an inflammatory process results in the formation of granulomatous lesions affecting the diskovertebral segments. Bone destruction and sclerosis can be seen, as well as osseous fragmentation. Nutrient supply to the disk is impaired from the destruction of the vertebra, and caseous necrosis causes the diskovertebral unit to collapse.

The osseous destruction is progressive, leading to vertebral collapse. Kyphosis and scoliosis can result. Granulation tissue and abscess formation around the spinal canal can result in neurologic symptoms.\(^6\) Tubercular lesions can be present in the thoracic and lumbar spine, with thoracic lesions more often resulting in kyphosis.\(^2\) Spinal tuberculosis remains a potentially crippling disease and is one of the most common worldwide causes of kyphotic deformity.\(^7,8\)

Clinical Presentation

Clinical features of spinal tuberculosis include an insidious, gradual onset of back pain, local tenderness, and anorexia. Night sweats and fever may also be present. Oguz et al\(^9\) reported that >50% of patients had some element of a neurologic deficit. Thoracic involvement is associated with more severe sequelae compared with lumbar manifestations; complications include sensory deficits, motor loss, and changes in bowel and bladder function. Skin breakdown over severe curves can lead to local and systemic infections.

The most severe complications of spinal tuberculosis are paraplegia, tetraplegia, hemiplegia, or monoplegia.\(^1\) Paraplegia can result from impingement on the spinal cord.

Diagnosis:

Pott’s Disease

Michael P. Silverstein, BS; Isador H. Lieberman, MD; Selvon St. Clair, MD, PhD; Mark Kayanja, MD, PhD; Laura W. Bancroft, MD

Answer to Radiologic Case Study

Pott’s disease, or tuberculous spondylitis, is a consequence of the hematogenous spread of *Mycobacterium tuberculosis*. Tuberculosis continues to be the world’s most lethal and prevalent infectious disease, with >3 million deaths annually, and spinal tuberculosis accounts for approximately 5% of all tuberculosis cases. An increasing incidence, likely resulting from an aging population, is found in association with acquired immune deficiency syndrome (AIDS) and increased immigration.

The presentation of Pott’s disease depends on the stage of the disease, the affected location, and the presence of complications. Pulmonary involvement is typically the primary focus, with secondary involvement causing destruction of the vertebrae and intervertebral disks and gross spinal deformity. In addition, prevertebral and paravertebral abscesses can form.

The traditional treatment approach involved surgical intervention for debridement of the abscess, reconstruction of the deformity, and protection of the neurological elements. With advanced antibiotic regimens, the disease can be controlled and cured prior to the advent of the osteolytic spinal deformity.

Pathogenesis

When *Mycobacterium tuberculosis* involves the spine, an inflammatory process results in the formation of granulomatous lesions affecting the diskovertebral segments. Bone destruction and sclerosis can be seen, as well as osseous fragmentation. Nutrient supply to the disk is impaired from the destruction of the vertebra, and caseous necrosis causes the diskovertebral unit to collapse.

The osseous destruction is progressive, leading to vertebral collapse. Kyphosis and scoliosis can result. Granulation tissue and abscess formation around the spinal canal can result in neurologic symptoms. Tubercular lesions can be present in the thoracic and lumbar spine, with thoracic lesions more often resulting in kyphosis. Spinal tuberculosis remains a potentially crippling disease and is one of the most common worldwide causes of kyphotic deformity.

Clinical Presentation

Clinical features of spinal tuberculosis include an insidious, gradual onset of back pain, local tenderness, and anorexia. Night sweats and fever may also be present. Oguz et al reported that >50% of patients had some element of a neurologic deficit. Thoracic involvement is associated with more severe sequelae compared with lumbar manifestations; complications include sensory deficits, motor loss, and changes in bowel and bladder function. Skin breakdown over severe curves can lead to local and systemic infections.

The most severe complications of spinal tuberculosis are paraplegia, tetraplegia, hemiplegia, or monoplegia. Paraplegia can result from impingement on the spinal cord.
due to abscesses, caseous debris, and granulation tissue. Mechanical instability and spinal deformity can result in paraplegia from stretching of the spinal cord, resulting in cord impairment. Although spinal tuberculosis is primarily treated medically, severe complications may require surgical intervention.

Diagnostic Imaging

Tuberculosis of the spine is a relatively indolent process compared with pyogenic diskitis because *M tuberculosis* does not produce proteases. However, marked destructive changes can occur, particularly with delayed treatment (Figures 2, 3). The features most commonly seen on computed tomography are bone and disk destruction with variable bone production or sequestra formation, multilevel involvement, and paraspinal abscesses that may be large and contain calcifications (Figure 4).

Spinal tuberculosis tends to seed the thoracolumbar junction and may extend several vertebral levels away beneath the anterior and posterior longitudinal ligaments. This may result in classic gouging deformities of the anterior vertebral bodies above or below the level of primary involvement.

Magnetic resonance imaging is the choice imaging method due to its planar capabilities and soft tissue contrast resolution. The predominant findings on magnetic resonance images are hypointensity on T1-weighted sequences, variable signal intensity depending on disease chronicity on T2-weighted sequences, and heterogeneous enhancement of the ≥1 involved vertebral bodies and disks (Figure 5). Paravertebral involvement may result in abscesses in the paravertebral or psoas muscles (Figure 5), which may contain calcification (better depicted on computed tomography scans).

The characteristic gibbus deformity seen in Figures 2 and 3 results from progressive bone necrosis leading to collapse and wedging in multiple anterior vertebral bodies. Low signal on T1-weighted and variable signal on T2-weighted magnetic resonance images in affected vertebral bodies, delayed disk involvement, and prevertebral and paravertebral or intraosseous abscesses with subligamentous and epidural extension are commonly seen in spinal tuberculosis (Figure 5).

Surgical Management

Multidrug antituberculous chemotherapy, including isoniazid, rifampin, pyrazin-
Tuberculous spondylitis is a worldwide disease that occurs in up to 5% of all cases of tuberculosis as a consequence of the hematogenous spread of pulmonary *M. tuberculosis*. Because of the increasing incidence of tuberculosis in the aging population, patients with AIDS, and recent immigrants, orthopedic surgeons must consider this diagnosis in the event of multilevel spinal involvement or destruction at the thoracolumbar junction with kyphosis. Surgical intervention is required for debridement of vertebral and paravertebral abscesses, reconstruction of the deformity, and protection of the neurological elements.

REFERENCES

