Szilard Kiss
Jennifer Krawitz
During the last 10 years, the use of intravitreal anti-vascular endothelial growth factor (VEGF) therapy has tremendously increased and plays an integral role in the treatment of numerous retinal diseases. These medications are considered to be biologics as they are produced in living cells as compared to traditional small-molecule medications that are synthesized through a chemical process. Ranibizumab (Lucentis; Genentech, South San Francisco, CA) and aflibercept (Eylea; Regeneron, Tarrytown, NY) are two U.S. Food and Drug Administration (FDA)-approved biologic agents that are approved to treat neovascular age-related macular degeneration (AMD), macular edema following retinal vein occlusion, diabetic macular edema, and diabetic retinopathy.1,2 Just recently, ranibizumab was also approved for myopic choroidal neovascularization.2 Bevacizumab (Avastin; Genentech, South San Francisco, CA), which is an FDA-approved biologic for the treatment of colon cancer, has also been used as an off-label alternative to ranibizumab and aflibercept for the treatment of these retinal diseases. As of now, these three anti-VEGF agents are the main intraocular therapies used to treat retinal disease; however, this will likely change in the next few years as biosimilars enter the market. This article will the address the development and the potential impact biosimilars may have in ophthalmology.
Exclusivity Periods
Currently, drug compounds produced in the United States have a defined exclusivity period during which only the company who manufactured the drug can market it. After the exclusivity period has ended for branded, small-molecule medications, generic medications can be produced to compete with the original medication. Similarly, after the exclusivity period has ended for branded biologic medications, biosimilar medications can be produced and sold. Importantly, the exclusivity period is set to expire for ranibizumab in June 2020 and for aflibercept in June 2027, and there are already many companies developing biosimilar medications to compete with these popular ocular medications.3
One of the reasons pharmaceutical companies are investing in biosimilars is because they are a lot less costly to develop than bringing a new biologic to market. It is estimated that the cost to develop a new biologic is close to $800 million, whereas the cost to develop a biosimilar ranges from $75 to $250 million.4 In 2015 alone, Lucentis generated $3.6 billion and Eylea $2.7 billion in global sales, highlighting the reason why biologic companies are interested in entering the ocular biologic marketplace.8,13
One of the reasons for the lower developmental costs has to do with the ability for biosimilars to be approved through an expedited pathway known as the Biologics Price Competition and Innovation (BPCI) Act of 2009, which is part of the Affordable Care Act (Figure 1). In comparison to the development of a new biologic, which focuses on defining efficacy and safety through clinical trials, biosimilar development focuses more on scientific testing and proving that the two agents are similar, with the understanding that similar molecules will produce similar reactions in the body (Figure 2).5
Approval and Development of Biosimilars
Since the passage of the BPCI Act, a total of seven biosimilars have been approved in the United States, and more than 60 are in development, including many ophthalmologic biosimilars of both ranibizumab and aflibercept.5 In terms of ocular biosimilars, the company Formycon is furthest along with FYB201, which is a biosimilar of ranibizumab. The company is currently enrolling patients in a phase 3 clinical trial to compare the safety, efficacy, and immunogenicity of FYB201 to ranibizumab. The company is also in the early stages of development of FYB203, a biosimilar of aflibercept.6,7,8
However, Formycon is not the only company targeting the ocular biosimilar market; Pfenex, Coherus BioSciences, Siam Bioscience, Samsung Bioepis, and Xbrane have all started the development process of a biosimilar to ranibizumab.8,9
Although ocular-specific biosimilars still remain in the developmental stages in the United States, other countries have already started to incorporate them into their armamentarium. In 2015, India became the first country to approve an ocular anti-VEGF biosimilar. Razumab by Intas Pharmaceuticals was approved as a biosimilar to ranibizumab for the treatment of wet AMD, edema associated with retinal vein occlusions, degenerative myopia, and diabetes. In India, it is offered at a 25% discount compared to Lucentis (Razumab sells for $240 vs. $340 for Lucentis). Unfortunately, Razumab struggled initially with maintaining the quality of its batches, which led to a high rate of ocular inflammation in up to 10% of patients. Once the manufacturing process was revised, no significant adverse events have been reported. Similar to Lucentis, initial reports of Razumab show an improvement in macular thickness and best-corrected vision.6,10,11
Hesitation to Switch
Razumab's initial struggles highlight the fragility of biologics and is just one of the reasons why practitioners may be hesitant to incorporate new biosimilars into their practice. Another reason why physicians may not be eager to switch to biosimilars has to do with the cost. Biosimilars will be priced lower than their branded counterpart; however, they will still not be cheaper than off-label bevacizumab. Bevacizumab, on average, costs approximately $50 per treatment, whereas Eylea and Lucentis cost approximately $2,000 per treatment.17 If ocular biosimilars follow the same pattern as other biosimilars released in the U.S., we could expect an estimated savings of 15% to 30% off a ranibizumab and aflibercept biosimilar. However, even with those savings, the final cost of biosimilars would still be nowhere near the cost of bevacizumab.6 As such, for those physicians who primarily prescribe bevacizumab switching to an ocular biosimilar will only potentially increase one's costs.
The main demographic that will be impacted by the advent of biosimilars will be those ophthalmologists that frequently prescribe ranibizumab and aflibercept. Like all of us, these physicians have developed their own practice patterns and brand loyalty, so they may not be so eager to switch to a new biosimilar agent. However, with the way health care is changing, physicians may not have a choice but to incorporate biosimilars into their practice.6
Potential Impact
More than ever, insurance companies are looking for ways to cut costs and save money. Biologics are part of a $7.5 billion industry, and if insurance companies can save 15% to 30% of those costs, it will result in significant savings.6 Insurance companies are looking at the cost of care by individual providers, which may result in physicians becoming more compelled to choose an FDA-approved biosimilar. Patients may also begin receiving push back from their insurance companies who may only agree to reimburse a biosimilar, forcing those who want a brand name product to pay the difference.6,10 Physicians may also need to begin justifying why a patient needs a “brand name only” product over a biosimilar equivalent to obtain coverage.
Although we cannot predict for certain how biosimilars will affect ophthalmology, we know that biosimilars will undoubtedly have a large impact on the United States health care system. Biosimilars will offer an FDA-approved, lower-cost biologic medication that should not compromise on quality, efficacy, or safety standards. Although this may force physicians to incorporate new medications into their practice, hopefully these biosimilars will truly offer an equivalent safety and efficacy profile.
Biosimilars should drive competition while providing savings for patients, providers, and the health care system as a whole, which hopefully will go into the development of the next generation of medications.12
References
- Highlights of prescribing information: Eylea (aflibercept) injection. Regeneron website. https://www.regeneron.com/sites/default/files/EYLEA_FPI.pdf. Accessed November 22, 2017.
- Highlights of prescribing information: Lucentis (ranibizumab) injection. Genentech website. https://www.gene.com/download/pdf/lucentis_prescribing.pdf. Accessed November 22, 2017.
- Derbyshire M. Patent expiry dates for biologicals: 2016 update. Generics and Biosimilars Initiative Journal (GaBI Journal). 2017;6(1):27–30. doi:10.5639/gabij.2017.0601.006 [CrossRef]
- Bourgoin AF, Nuskey B. White paper: An outlook on U.S. biosimilar competition. Drugs Today (Barc). 2013;49(6):399–410.
- The new frontier for improved access to medicines: Biosimilars & interchangeable biologic products. The Biosimilars Council and Association for Accessible Medicines. http://biosimilarscouncil.org/wp-content/uploads/2017/09/Biosimilars-Council-Handbook-09-17.pdf. September2017. Accessed November 22, 2017.
- Houston S. Biosimilars: Not your typical generic. Retinatoday.com. http://retinatoday.com/2017/04/biosimilars-not-your-typical-generic. Published April 2017. Accessed November 22, 2017.
- Formycon. Biosimilars for aflibercept and ranibizumab in development. American Academy of Ophthalmology website. https://www.aao.org/headline/biosimilars-aflibercept-ranibizumab-in-development. Published March 4, 2016. Accessed November 22, 2017.
- Biosimilars of ranibizumab. Generics and Biosimilars Initiative Journal (GaBI Journal). http://gabionline.net/Biosimilars/General/Biosimilars-of-ranibizumab. Published October 30, 2015. Updated September 15, 2017. Accessed November 22, 2017.
- S. Korea's Samsung Bioepis developing biosimilar of Roche's Lucentis. CNBC.com. https://www.cnbc.com/2017/06/01/reuters-america-skoreas-samsung-bioepis-developing-biosimilar-of-roches-lucentis.html. Published June 1, 2017. Accessed November 22, 2017.
- Harrison L. New batches of ranibizumab biosimilar safe, effective. Medscape: American Society of Retina Specialist Conference News. https://www.medscape.com/viewarticle/867481. Published August 15, 2016. Accessed November 22, 2017.
- Trials: Anti-VEGF biosimilars comparable to Lucentis. Retina Specialists. http://www.retina-specialist.com/article/trials-antivegf-biosimilars-comparable-to-lucentis. Published September 19, 2016. Accessed November 22, 2017.
- About Biologics. Sandoz website. https://www.sandoz.com/our-work/biopharmaceuticals/about-biologics. Accessed November 22, 2017.
- Kirkner RM. The biosimilars race for AMD treatments is on. OIS News. https://ois.net/the-biosimilars-race-for-amd-treatments-is-on/. Published March 29, 2016. Accessed November 22, 2017.
- Calvo B, Zuniga L. The US approach to biosimilars: The long-awaited FDA approval pathway. BioDrugs. 2012;26(6):357–361. doi:10.1007/BF03261893 [CrossRef]
- Mukamal R. Avastin, Eylea, and Lucentis – What's the difference? American Academy of Ophthalmology Eye Health. https://www.aao.org/eye-health/diseases/avastin-eylea-lucentis-difference. Published July 20, 2015. Accessed November 22, 2015.