Guest Editorial

Top 10 List for Building Team Science

Team science has become an increasing focus of biomedical and nursing research, with funding agencies frequently specifying collaboration in their solicited proposals (Baker, 2015; Gewin, 2015). The team science approach is being fueled, in part, by the complexity of current research questions owing to the era of big data. Thus, researchers are being asked to forge interprofessional, cross-disciplinary collaborations to tackle research (Baker, 2015). The upside of this diversity in teams of scientists is that this approach can yield innovations, as demonstrated by the increased numbers of highly cited publications generated by successful teams of researchers. This type of teamwork is most common in the life and physical science arenas, where major research initiatives, such as the Human Genome Project, have been accomplished by scientists working together across disciplines and institutions (Baker, 2015). Nursing and health sciences researchers are also beginning to shift focus to a more team science approach (Kneipp et al., 2014).

Our own experience working as members and leaders of teams within and outside of our university have varied in the past from great successes to limited achievements. We offer now our top 10 keypoints and lessons learned that have aided our current, successful team science collaborations in gerontological nursing research:

1. Get to know your team members. Knowing team members on more than just a superficial level is key because trust matters in successful collaborations. Team members must be able to explain their points of view, ask questions to clarify concepts and ideas, and practice active listening—all of which are built on a foundation of trust and mutual respect (Baker, 2015). This foundation can be engendered by more personal, collegial connections.

2. Create and maintain an atmosphere that invites open communication, avoiding profession-specific lingo. Team members must not assume that others know what they know or perceive things the same ways they do. This atmosphere can be heightened not only by cultural differences that may be more present in international collaborations, but also in cross-disciplinary collaborations in which common terms have different meanings in various fields. For example, the meaning of “abstract” in one field does not always mean the same across all disciplines.

3. Negotiate authorship of dissemination projects early and often. Discuss publications and other deliverables, keeping in mind what matters to team players and assigning products of collaboration to team members who will receive the most career benefits (Gewin, 2015). Junior investigators may struggle with these aspects of collaboration, but should not shy away from initiating the conversation, given that they can benefit from team science approaches by interacting with senior researchers in the field across institutions.

4. Share notes and team meeting minutes in ways that are easily accessible. Assigning a team member the responsibility of taking notes and posting them for all team meetings will help avoid confusion and rehashing of decisions. Documentation of key decisions is especially important to orient new team members who may join the team at various times along the project timeline.

5. Establish a shared decision making standard for how team decisions are reached. Group leaders should take responsibility for creating a culture in which team members share ideas without fear. Likewise, shared decision making when addressing the goals and expectations of the team’s work helps advance those goals and generate new ideas and directions.

6. Make time to maintain the high function of your team. Collaborations can fall apart easily for any number of reasons, including misunderstandings, faulty assump-
tions, or clashing personalities (Gewin, 2015). Although being part of a successful team can be beneficial to the career paths of junior members, getting mired in an unsuccessful team struggling to make progress can be an albatross around the neck. Be proactive in making time on team meeting agendas to discuss what is working and what could be done to continue to improve team communication and function.

7. Meet in person as often as possible. Research shows that face-to-face meetings are important for forging good working relationships and building trust, as well as promoting clear communication (Baker, 2015). Because so much of building trust involves interacting with people, more opportunities to work face-to-face provide more avenues to build relationships.

8. Anticipate conflict. Conflict happens in teams. Know that there may be times when there is conflict in the group. When conflict happens, embrace and discuss it in open and respectful ways. If your team is built on trust and mutual respect, conflicts will be resolved in ways that move the team forward.

9. Include students and other learners in meaningful ways. Students must learn the methods of team science and effective collaboration to be productive in scientific endeavors following graduation. As participants in high functioning teams, students receive hands-on experience in negotiating complex interprofessional relationships and systems, and are afforded invaluable opportunities to expand their knowledge base and professional networks. Involve community members who represent an area or population of interest, as they offer unique perspectives to the team’s work (Cooke & Hilton, 2015).

10. Celebrate. Celebrating and having fun together deepens the bonds among team members. In addition, celebrations provide excellent role modeling opportunities for students and junior faculty members. Innovation thrives on high energy and enthusiasm, and celebrations can fuel the fire for continued successes and productivity. Have fun!

Approaching team science projects with these points in mind can aid in the success of your research ventures and can provide meaningful relationships for your entire career.

REFERENCES

Karen M. Rose, PhD, RN, FGSA, FAAN
Joel G. Anderson, PhD, CHTP
College of Nursing
University of Tennessee - Knoxville
Knoxville, Tennessee

The authors have disclosed no potential conflicts of interest, financial or otherwise.

doi:10.3928/19404921-20161028-01