Journal of Gerontological Nursing

Feature Article 

Delirium in Early-Stage Alzheimer’s Disease: Enhancing Cognitive Reserve as a Possible Preventive Measure

Donna M. Fick, PhD, GCNS-BC; Ann Kolanowski, PhD, RN, FGSA, FAAN; Elizabeth Beattie, PhD, RN, FGSA; Judith McCrow, RN, RM

Abstract

Delirium is a disorder of acute onset with fluctuating symptoms and is characterized by inattention, disorganized thinking, and altered levels of consciousness. The risk for delirium is greatest in individuals with dementia, and the incidence of both is increasing worldwide because of the aging of our population. Although several clinical trials have tested interventions for delirium prevention in individuals without dementia, little is known about the mechanisms for the prevention of delirium in early-stage Alzheimer’s disease (AD). The purpose of this article is to explore ways of preventing delirium and slowing the rate of cognitive decline in early-stage AD by enhancing cognitive reserve. An agenda for future research on interventions to prevent delirium in individuals with early-stage AD is also presented.

Abstract

Delirium is a disorder of acute onset with fluctuating symptoms and is characterized by inattention, disorganized thinking, and altered levels of consciousness. The risk for delirium is greatest in individuals with dementia, and the incidence of both is increasing worldwide because of the aging of our population. Although several clinical trials have tested interventions for delirium prevention in individuals without dementia, little is known about the mechanisms for the prevention of delirium in early-stage Alzheimer’s disease (AD). The purpose of this article is to explore ways of preventing delirium and slowing the rate of cognitive decline in early-stage AD by enhancing cognitive reserve. An agenda for future research on interventions to prevent delirium in individuals with early-stage AD is also presented.

Dr. Fick is Associate Professor of Nursing, and Dr. Kolanowski is Elouise Ross Eberly Professor of Nursing, School of Nursing, The Pennsylvania State University, University Park, Pennsylvania; Dr. Beattie is Director, Dementia Collaborative Research Centre, School of Nursing, Queensland University of Technology, and Ms. McCrow is a Research Officer and PhD candidate, Dementia Collaborative Research Centre, Queensland University of Technology, School of Nursing, Brisbane, Queensland, Australia.

Address correspondence to Donna M. Fick, PhD, GCNS-BC, Associate Professor of Nursing, School of Nursing, The Pennsylvania State University, 201 Health and Human Development East, University Park, PA 16802; e-mail: dmf21@psu.edu.

© Istockphoto / Kiyoshi Takahase

© Istockphoto / Kiyoshi Takahase

Delirium is a disorder of acute onset with fluctuating symptoms and is characterized by inattention, disorganized thinking, and altered levels of consciousness. The risk for delirium is greatest in individuals with dementia, and the incidence of both is increasing worldwide because of the aging of our population. Although several clinical trials have tested interventions for delirium prevention in individuals without dementia (Inouye, 2006), little is known about the mechanisms and models for the prevention of delirium in early-stage Alzheimer’s disease (AD). We do know that delirium occurs frequently in individuals with dementia and that outcomes for patients with delirium and dementia are poor (Fick, Agostini, & Inouye, 2002). As increasing numbers of people are diagnosed at earlier stages with AD and related dementias, attention to preventable and treatable problems like delirium are crucial to the care of individuals with AD.

The purpose of this article is to explore ways of preventing delirium and slowing the rate of cognitive decline in early-stage AD by enhancing cognitive reserve, a promising new area of research. We begin by defining delirium in dementia, its prevalence, and outcomes in early-stage AD. We then define cognitive reserve and review the literature that supports its association to dementia and delirium. Finally, we set an agenda for future research on interventions to prevent delirium in individuals with early-stage AD.

Definitions and Outcomes for Delirium in Early-Stage AD

According to the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, text revision (American Psychiatric Association [APA], 2000), and as noted above, delirium due to a general medical condition includes an alteration of consciousness, change in cognition, acute onset, fluctuating course, and reduced attention. For the purposes of this review, early-stage AD is defined as having a diagnosis of early-stage AD or dementia with a Mini-Mental State Examination score greater than 17, Clinical Dementia Rating Scale scores of 0.5 to 2.0, or a Global Deterioration Scale score of 2.0 or less (Burgener et al., 2008).

Delirium is superimposed on dementia when an acute change in mental status (characterized by a fluctuating course, inattention, and either disorganized thinking or an altered level of consciousness) occurs in a patient with preexisting dementia (APA, 2000). The pathogenesis of delirium is poorly understood but is known to share several overlapping features with dementia (Inouye, 2006). Although delirium and dementia are often separated clinically and methodologically, they often occur together and are probably highly interconnected. Recent literature suggests that delirium and dementia may represent points along a continuum, with delirium reflecting underlying brain vulnerability in early-stage dementia (Hshieh, Fong, Marcantonio, & Inouye, 2008). Thus, interventions that are protective for dementia may also help prevent delirium or reduce its severity.

Although the presence of dementia has been shown to be an independent risk factor for delirium (Inouye, 2006), many studies exclude individuals with dementia. Several studies have reported higher rates of hospitalization in individuals with dementia compared with those without dementia, which may put them at risk for developing delirium (Chodosh et al., 2004; Fick, Kolanowski, Waller, & Inouye, 2005). Delirium often occurs in the hospital setting but may occur even more frequently in community-dwelling individuals with dementia. The prevalence of delirium superimposed on dementia (DSD) ranges from 22% to 89% in both hospital and community settings (Fick et al., 2002).

The onset of delirium is associated with poor outcomes, including functional decline, increased hospitalizations, increased health care use, nursing home placement, and death (Baker, Wiley, Kokmen, Chandra, & Schoenberg, 1999; Fick & Foreman, 2000; Fick et al., 2005; McCusker et al., 2001; O’Keeffe & Lavan, 1999). A study by Fick et al. (2005) found patients with DSD had the highest health care costs and use compared with patients with delirium alone, dementia alone, and those with neither dementia nor delirium. Bellelli, Speciale, Barisione, and Trabucchi (2007) analyzed four matched samples of older adults consecutively admitted to a rehabilitation unit and found that patients with DSD had significantly higher mortality than patients with delirium or dementia alone. Prevention and improved management of delirium in dementia is clinically important and urgently needed.

Cognitive Reserve as a Mechanism for Delirium in Dementia

Work by Katzman et al. (1988) was one of the earliest references to the idea of reserve as it relates to clinical manifestations of brain disease. The concept of reserve helps explain the lack of association often seen between actual disease pathology and clinical manifestations of the disease. In their seminal study, a number of individuals who exhibited little evidence of AD in life were found to have extensive pathology on postmortem examination. The researchers concluded that these individuals may have started with more neurons (i.e., reserve) than those individuals who had similar pathology but who did exhibit clinical signs and symptoms.

As a theoretical framework for understanding the manifestation of brain pathology, reserve has come to include both passive and active processes in the brain that modify risk for the clinical expression of brain disease. Passive reserve is often referred to as brain reserve and posits that there are individual differences in the amount of brain damage one can endure before exhibiting clinical signs and symptoms. These threshold differences are accounted for by brain size and synapse density (Stern, 2002).

Active reserve is often referred to as cognitive reserve and posits that individuals differ in the degree of efficiency with which they can use brain networks or cognitive strategies to cope with brain pathology. These differences are hypothesized to be due to mental stimulation that individuals are exposed to over a lifetime, including level of educational attainment, occupational complexity, and the mental complexity of leisure activities (Valenzuela & Sachdev, 2006).

Brain reserve and cognitive reserve are not mutually exclusive; animal studies have demonstrated that mental stimulation in the form of environmental enrichment is a strong signal for the generation of neurons and synapses (van Praag, Kempermann, & Gage, 2000). Neurons and synapses are the substrate on which brain networks are built and enhanced synaptic activity (more efficient brain networks) might exist in individuals who engage in mentally stimulating activities (Scarmeas & Stern, 2003). In this regard, reserve is not a static central nervous system (CNS) property, and evidence for the capacity to develop compensatory mechanisms in late life and early-stage AD is now emerging.

We use the term cognitive reserve in this article to refer to mechanisms that may prevent delirium in dementia because it is behaviorally defined and therefore carries greater clinical relevance than the term brain reserve. The literature that supports the idea of cognitive reserve and prevention of brain pathology is reviewed below.

Interventions Showing Promise for Increasing Cognitive Reserve

Most of the research has demonstrated an association between cognitive reserve and risk for AD (Valenzuela & Sachdev, 2006), and although it has not yet been fully tested in delirium trials, one possible mechanism for delirium prevention in early-stage AD is the enhancement of cognitive reserve in individuals with dementia. The existing evidence on prevention of cognitive decline and enhancement of cognitive reserve is important for understanding the prevention of delirium in early-stage AD. Those interventions that have the strongest links to improving cognitive reserve in individuals with brain pathology, particularly dementia, include physical activity, social interaction, challenging mental activities, and avoidance of anticholinergic drugs and inappropriate medications (Table 1).

Interventions to Enhance Cognitive Reserve

Table 1: Interventions to Enhance Cognitive Reserve

Physical Activity

Physical activity studies have demonstrated strong associations between exercise and dementia risk (Laurin, Verreault, Lindsay, MacPherson, & Rockwood, 2001), but the extent to which cognitive research from exercise may be protective against delirium is currently speculative. Laurin et al.’s (2001) longitudinal Canadian study of 4,615 community-dwelling men and women age 65 and older who were dementia free at baseline investigated associations between regular physical activity and risk of cognitive decline. At 5-year follow up, participants who performed some level of exercise had less risk of cognitive impairment, AD, and dementia of any kind compared with participants with no regular exercise (Laurin et al., 2001). Outcomes of Podewils et al.’s (2005) U.S. study of 3,375 men and women age 65 and older who were dementia free at baseline supports the theory that noncarriers of APOE*E4 who participate in a number of different physical activities have protection against dementia risk.

Several other studies have demonstrated that participants undertaking regular physical activity (2 to 3 times per week, 15+ minutes per session) are less likely to have dementia than control groups with less or no exercise (Rovio et al., 2005; van Gelder et al., 2004). Stemming from these findings, it has been claimed that physical exercise stimulates trophic factors and neural growth, a potential mechanism resulting in provision of cognitive reserve in later life (Dik, Deeg, Visser, & Jonker, 2003). A recent study found self-report of participation in regular exercise to be protective against delirium (Yang et al., 2008). Although there are limited studies in this area, recommended interventions for delirium prevention include mobility and walking.

Social Activities and Support

Longitudinal studies have shown that social networks and social engagement have a protective influence on cognitive function, especially in women (Crooks, Lubben, Petitti, Little, & Chiu, 2008; Zunzunegui, Alvarado, Ser, & Otero, 2003). Socially engaging activities involving children, family, and friends, especially at midlife, have been associated with a decreased risk of dementia (Lindstrom et al., 2005; Wilson et al., 2002; Zunzunegui et al., 2003). Frequent interactions with large social networks, leisure pursuits, being married, and perceived positive support from friends are also positively correlated with maintenance of cognitive function (Elwood et al., 1999; Holtzman et al., 2004; Yeh & Liu, 2003).

Challenging Mental Activities and Cognitive Stimulation

Brain plasticity is the term used to describe the brain’s ability to compensate the effects of insults through structural and functional changes (Pascual-Castroviejo, 1996). On the basis of animal studies and clinical trials in human beings, plasticity theory suggests that rehabilitative interventions may facilitate neuronal reorganization and recovery of function, supporting the idea that cognitive recreational activities may be protective (Albensi & Janigro, 2003). Evidence supports the concept that mental stimulation may increase cognitive reserve and decrease the rate of age-related cognitive decline (Le Carret et al., 2005; Newson & Kemps, 2006). Various studies have found significant relationships between stimulation of the brain and decrease in cognitive de cline, with some finding that higher education in earlier life may reduce, delay, or protect against cognitive decline in later years (Gatz et al., 2001; Lyketsos, Chen, & Anthony, 1999; Schmand, Smit, Geerlings, & Lindeboom, 1997).

Having more years of education has been shown to have a protective effect on cognitive decline, and people with higher levels of education have greater brain reserves (Gatz, 2005; Gatz et al., 2001). A study of 326 Canadian World War II veterans showed that young adult intelligence was the most important determinant of older adult performance (Gold et al., 1995). Supporting this are the findings that occupations that are intellectually more difficult and challenging (Schmand et al., 1997) and increased years of formal education (Lyketsos et al., 1999) can have a protective effect on cognitive decline. Education occurring at any age can be protective, and that protection occurs through adulthood, not just in old age (Farmer, Kittner, Rae, Barko, & Regier, 1995; Lyketsos et al., 1999).

Pursuing this further, the question of whether decline can be altered in cognition has been answered to some degree in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) Study. This randomized, controlled, single-blind study (N = 2,832, age range = 65 to 94) investigated the effect of cognitive training on mental ability (Ball et al., 2002) with a 5-year follow up (Willis et al., 2006). Findings from this study suggest that cognitive training can improve cognitive functioning, and improvements can be sustained over 5 years. Supporting this was a small case-control study (N = 24, 12 cases and 12 controls) that evaluated the benefit of cognitive stimulation in elderly people with mild cognitive impairment compared with cognitively intact participants (Wenisch et al., 2007). This study used reality orientation techniques, mental imaging, recall and delayed recall, and execu tive exercises as cognitive stimulating exercises. Findings suggested that cognitive stimulation can improve memory in older adults with mild cognitive impairment (Wenisch et al., 2007). Several home-based cognitive stimulating studies have shown that reading of newspapers, pursuit of hobbies, and participation in leisure activities are all capable of improving cognition and increasing cognitive reserve in older adults (Mackinnon, Christensen, Hofer, Korten, & Jorm, 2003; Newson & Kemps, 2006).

Anticholinergic and CNS-Active Medication Use

Studies have shown that categories of prescription drugs with anticholinergic and CNS-active properties are associated with low cognitive performance in older adults (Lechevallier-Michel, Molimard, Dartigues, Fabrigoule, & Fourrier-Raglat, 2005; Mintzer & Griffiths, 2007). These encompass drugs commonly taken by older adults, including some kinds of antihistamine drugs, bronchodilator medications, some antipsychotic agents, antinausea medicines, anti-anxiety agents, antidepressant drugs, cardiovascular agents, and Parkinson’s disease medications (Lechevallier-Michel et al., 2005; Napoli, 2008). Although not independent predictors of the development of dementia, people who had taken these kinds of medications consistently were more likely to have a diagnosis of mild cognitive impairment at 1-year follow up (80%) than nonusers (35%), and anticholinergic drug use was a strong predictor of mild cognitive impairment (odds ratio = 5.12, p = 0.001) (Ancelin et al., 2006).

People who have taken these medications can have CNS side effects, such as memory and attention deficits and delirium, even when dosages are taken at recommended levels (Lechevallier-Michel et al., 2005; Moore & O’Keeffe, 1999). In a study using administrative data on 960 individuals with dementia, 79% were on CNS-active drugs. These CNS drugs were associated with an increased risk of falls, fractures, and delirium in individuals with dementia (Fick, Kolanowski, & Waller, 2007). Although studies have been conflicting as to whether individuals with dementia take more potentially inappropriate medications, these drugs have also been associated with delirium and cognitive decline in individuals with dementia (Fick & Mion, 2008; Kolanowski, Fick, Waller, & Ahern, 2006).

Cognitive Reserve and Delirium Superimposed on Dementia

In at least two studies, individuals with low levels of educational attainment were at greater risk for delirium than individuals with more education (Jones et al., 2006; Pompei et al., 1994). In a recent prospective study of 779 newly admitted elderly hospitalized patients without dementia, participation in regular exercise was found to be protective against delirium (Yang et al., 2008).

There is an expanding body of evidence examining delirium in individuals with dementia, but only a few controlled trials have reported data on interventions to prevent delirium in individuals with dementia, and none of these trials reported data for individuals with early-stage AD. Many intervention studies for delirium prevention in the past 10 years have not included individuals with dementia, did not measure or report dementia stage, or did not have sufficient power to analyze individuals with dementia separately (Britton & Russell, 2004; Fick et al., 2002; Lundström et al., 2005; Naughton et al., 2005). Strategies to prevent or decrease the severity of delirium usually focus on multicomponent interventions, including consultation by a geriatrician, early mobilization, hydration, decreasing psychotropic medication, cognitive stimulation, and nursing care interventions.

A controlled clinical trial by Inouye et al. (1999) that included individuals with dementia found that fewer patients in the treatment group (22 of 128 [17%]) developed DSD compared with the usual care group (40 of 125 [32%]). The most effective part of their intervention for individuals with dementia was the nonpharmacological sleep protocol. As increasing numbers of individuals are diagnosed with dementia at earlier stages, increased attention to understanding the mechanisms involved in prevention of delirium will be crucial for this growing population.

The evidence indicates that mental and physical activity builds cognitive reserve, but there are also factors that may reduce cognitive reserve. The presence of dementia, depression, dehydration, immobility, sensory impairment, multiple comorbidities, and use of certain classes of drugs are risk factors for delirium. It is important to address these potential factors when designing a program of delirium prevention.

Implications for Future Nursing Research

Despite poor outcomes associated with DSD, only a few studies have analyzed the prevention of delirium in individuals with dementia, the results of which have been mixed. No studies have addressed delirium in individuals with early-stage AD. The overall evidence for delirium prevention models in early-stage AD is weak due to a low number of randomized trials with inconsistent results, as well as the exclusion of individuals with dementia in most delirium trials (Atkins et al., 2004). However, the use of cognitive stimulation and recreational activities and the avoidance of CNS-active medications hold great promise to decrease delirium incidence and severity in early-stage AD. This approach requires more testing in rigorous trials.

Although most of the current work regarding the enhancement of cognitive reserve has been conducted in populations of individuals with dementia, there is emerging evidence that similar mechanisms may prevent delirium in this population (Jones et al., 2006; Mudge, Giebel, & Cutler, 2008; Pompei et al., 1994). Delirium is higher in individuals with dementia than any other subgroup of disease, and dynamic models specific to enhancing cognitive reserve and preventing delirium in early-stage AD are urgently needed. Table 2 outlines an agenda for future nursing research in this area.

A Nursing Research Agenda for Interventions to Prevent Delirium in Early-Stage Alzheimer’s Disease (AD)

Table 2: A Nursing Research Agenda for Interventions to Prevent Delirium in Early-Stage Alzheimer’s Disease (AD)

Conclusion

There are tremendous public health implications for developing a delirium prevention program in early-stage AD, a time when there is still significant potential for rehabilitation (Yu, Evans, & Sullivan-Marx, 2005). Because delirium leads to many poor health outcomes (Bellelli, Frisoni, et al., 2007), prevention of delirium has the potential for significant personal, social, and economic benefits. Prospective studies that test current and future intervention models will aid the understanding of the needs of individuals with dementia across care settings and allow evidence-based guidelines to be developed and implemented for delirium prevention in early-stage AD.

References

  • Albensi, BC & Janigro, D2003. Traumatic brain injury and its effects on synaptic plasticity. Brain Injury, 17, 653–663. doi:10.1080/0269905031000107142 [CrossRef]
  • American Psychiatric Association. 2000. Diagnostic and statistical manual of mental disorders (4th ed., Text Rev.). Washington, DC: Author.
  • Ancelin, ML, Artero, S, Portet, F, Dupuy, AM, Touchon, J & Ritchie, K2006. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: Longitudinal cohort study. BMJ, 332, 455–459. doi:10.1136/bmj.38740.439664.DE [CrossRef]
  • Atkins, D, Eccles, M, Flottorp, S, Guyatt, GH, Henry, D & Hill, S et al. .2004. Systems for grading the quality of evidence and the strength of recommendations I: Critical appraisal of existing approaches The GRADE Working Group. BMC Health Services Research, 4, 38. doi:10.1186/1472-6963-4-38 [CrossRef]
  • Baker, FM, Wiley, C, Kokmen, E, Chandra, V & Schoenberg, BS1999. Delirium episodes during the course of clinically diagnosed Alzheimer’s disease. Journal of the National Medical Association, 91, 625–630.
  • Ball, K, Berch, DB, Helmers, KF, Jobe, JB, Leveck, MD & Marsiske, M et al. .2002. Effects of cognitive training interventions with older adults: A randomized controlled trial. Journal of the American Medical Association, 288, 2271–2281. doi:10.1001/jama.288.18.2271 [CrossRef]
  • Bellelli, G, Frisoni, GB, Turco, R, Lucchi, E, Magnifico, F & Trabucchi, M2007. Delirium superimposed on dementia predicts 12-month survival in elderly patients discharged from a postacute rehabilitation facility. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62, 1306–1309.
  • Bellelli, G, Speciale, S, Barisione, E & Trabucchi, M2007. Delirium subtypes and 1-year mortality among elderly patients discharged from a post-acute rehabilitation facility [Letter to the editor]. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62, 1182–1183.
  • Britton, A & Russell, R. 2004. Multidisciplinary team interventions for delirium in patients with chronic cognitive impairment (Article No. CD000395). Cochrane Database of Systematic Reviews, Issue 2.
  • Burgener, SC, Buettner, L, Buckwalter, KC, Beattie, E, Bossen, AL & Fick, D et al. .2008. Review of exemplar programs for adults with early-stage Alzheimer’s disease. Research in Gerontological Nursing, 1, 295–304.
  • Chodosh, J, Seeman, TE, Keeler, E, Sewall, A, Hirsch, SH & Guralnik, JM et al. .2004. Cognitive decline in high-functioning older persons is associated with an increased risk of hospitalization. Journal of the American Geriatrics Society, 52, 1456–1462. doi:10.1111/j.1532-5415.2004.52407.x [CrossRef]
  • Crooks, VC, Lubben, J, Petitti, DB, Little, D & Chiu, V2008. Social network, cognitive function, and dementia incidence among elderly women. American Journal of Public Health, 98, 1221–1227. doi:10.2105/AJPH.2007.115923 [CrossRef]
  • Dik, M, Deeg, D, Visser, M & Jonker, C2003. Early life physical activity and cognition at old age. Journal of Clinical and Experimental Neuropsychology, 25, 643–653. doi:10.1076/jcen.25.5.643.14583 [CrossRef]
  • Elwood, PC, Gallacher, JE, Hopkinson, CA, Pickering, J, Rabbitt, P & Stollery, B et al. .1999. Smoking, drinking, and other life style factors and cognitive function in men in the Caerphilly cohort. Journal of Epidemiology and Community Health, 53, 9–14. doi:10.1136/jech.53.1.9 [CrossRef]
  • Farmer, ME, Kittner, SJ, Rae, DS, Barko, JJ & Regier, DA1995. Education and change in cognitive function. The Epidemiologic Catchment Area Study. Annals of Epidemiology, 5, 1–7. doi:10.1016/1047-2797(94)00047-W [CrossRef]
  • Fick, D, Agostini, JV & Inouye, SK2002. Delirium superimposed on dementia: A systematic review. Journal of the American Geriatrics Society, 50, 1723–1732. doi:10.1046/j.1532-5415.2002.50468.x [CrossRef]
  • Fick, D, Cooper, JW, Wade, WE, Waller, JL, Maclean, JR & Beers, MH2003. Updating the Beers criteria for potentially inappropriate medication use in older adults: Results of a US consensus panel of experts. Archives of Internal Medicine, 163. Retrieved January 12, 2009, from http://archinte.ama-assn.org/cgi/content/full/163/22/2716 doi:10.1001/archinte.163.22.2716 [CrossRef]
  • Fick, D & Foreman, M2000. Consequences of not recognizing delirium superimposed on dementia in hospitalized elderly individuals. Journal of Gerontological Nursing, 26(1),30–40.
  • Fick, D, Kolanowski, A & Waller, J2007. High prevalence of central nervous system medications in community-dwelling older adults with dementia over a three-year period. Aging and Mental Health, 11, 588–595. doi:10.1080/13607860601086629 [CrossRef]
  • Fick, D, Kolanowski, A, Waller, J & Inouye, SK2005. Delirium superimposed on dementia in a community-living managed care population: A three year retrospective study of prevalence, costs, and utilization. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 60, 748–753.
  • Fick, DM & Mion, LC2008. How to try this: Delirium superimposed on dementia. American Journal of Nursing, 108(1),52–60.
  • Gatz, M. 2005. Educating the brain to avoid dementia: Can mental exercise prevent Alzheimer disease? Retrieved January 12, 2008, from the PubMed Central Web site: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=545200
  • Gatz, M, Svedberg, P, Pedersen, NL, Mortimer, JA, Berg, S & Johansson, B2001. Education and the risk of Alzheimer’s disease: Findings from the study of dementia in Swedish twins. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 56, P292–P300.
  • Gold, DP, Andres, D, Etezadi, J, Arbuckle, T, Schwartzman, A & Chaikelson, J1995. Structural equation model of intellectual change and continuity and predictors of intelligence in older men. Psychology and Aging, 10, 294–303. doi:10.1037/0882-7974.10.2.294 [CrossRef]
  • Holtzman, RE, Rebok, GW, Saczynski, JS, Kouzis, AC, Wilcox Doyle, K & Eaton, W2004. Social network characteristics and cognition in middle-aged and older adults. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 59B, P278–P284.
  • Hshieh, TT, Fong, TG, Marcantonio, ER & Inouye, SK2008. Cholinergic deficiency hypothesis in delirium: A synthesis of current evidence. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63, 764–772.
  • Inouye, SK2006. Delirium in older persons. New England Journal of Medicine, 354, 1157–1165. doi:10.1056/NEJMra052321 [CrossRef]
  • Inouye, SK, Bogardus, ST Jr. , Charpentier, PA, Leo-Summers, L, Acampora, D & Holford, TR et al. .1999. A multicomponent intervention to prevent delirium in hospitalized older patients. New England Journal of Medicine, 340, 669–676. doi:10.1056/NEJM199903043400901 [CrossRef]
  • Jones, RN, Yang, FM, Zhang, Y, Kiely, DK, Marcantonio, ER & Inouye, SK2006. Does educational attainment contribute to risk for delirium? A potential role for cognitive reserve. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61, 1307–1311.
  • Katzman, R, Terry, R, DeTeresa, R, Brown, T, Davies, P & Fuld, P et al. .1988. Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138–144. doi:10.1002/ana.410230206 [CrossRef]
  • Kolanowski, A, Fick, D, Waller, JL & Ahern, F2006. Outcomes of antipsychotic drug use in community-dwelling elders with dementia. Archives of Psychiatric Nursing, 20, 217–225. doi:10.1016/j.apnu.2006.04.004 [CrossRef]
  • Laurin, D, Verreault, R, Lindsay, J, MacPherson, K & Rockwood, K2001. Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58, 498–504. doi:10.1001/archneur.58.3.498 [CrossRef]
  • Le Carret, N, Auriacombe, S, Letenneur, L, Bergua, V, Dartigues, JF & Fabrigoule, C2005. Influence of education on the pattern of cognitive deterioration in AD patients: The cognitive reserve hypothesis. Brain and Cognition, 57, 120–126. doi:10.1016/j.bandc.2004.08.031 [CrossRef]
  • Lechevallier-Michel, N, Molimard, M, Dartigues, JF, Fabrigoule, C & Fourrier-Raglat, A2005. Drugs with anticholinergic properties and cognitive performance in the elderly: Results from the PAQUID study. British Journal of Clinical Pharmacology, 59, 143–151. doi:10.1111/j.1365-2125.2004.02232.x [CrossRef]
  • Lindstrom, HA, Fritsch, T, Petot, G, Smyth, KA, Chen, CH & Debanne, SM et al. .2005. The relationships between television viewing in midlife and the development of Alzheimer’s disease in a case-control study. Brain and Cognition, 58, 157–165. doi:10.1016/j.bandc.2004.09.020 [CrossRef]
  • Lundström, M, Edlund, A, Karlsson, S, Brännström, B, Bucht, G & Gustafson, Y2005. A multifactorial intervention program reduces the duration of delirium, length of hospitalization, and mortality in delirious patients. Journal of the American Geriatrics Society, 53, 622–628. doi:10.1111/j.1532-5415.2005.53210.x [CrossRef]
  • Lyketsos, CG, Chen, LS & Anthony, JC1999. Cognitive decline in adulthood: An 11.5-year follow-up of the Baltimore Epidemiologic Catchment Area Study. American Journal of Psychiatry, 156, 58–65.
  • Mackinnon, A, Christensen, H, Hofer, SM, Korten, AE & Jorm, AF2003. Use it and still lose it? The association between activity and cognitive performance established using latent growth techniques in a community sample. Aging, Neuropsychology, and Cognition, 10, 215–229.
  • McCusker, J, Cole, M, Abrahamowicz, M, Han, L, Podoba, JE & Ramman-Haddad, L2001. Environmental risk factors for delirium in hospitalized older people. Journal of the American Geriatrics Society, 49, 1327–1334. doi:10.1046/j.1532-5415.2001.49260.x [CrossRef]
  • Mintzer, MZ & Griffiths, RR2007. Differential effects of scopolamine and lorazepam on working memory maintenance versus manipulation processes. Cognitive, Affective & Behavioral Neuroscience, 7, 120–129. doi:10.3758/CABN.7.2.120 [CrossRef]
  • Moore, AR & O’Keeffe, ST1999. Drug-induced cognitive impairment in the elderly. Drugs & Aging, 15, 15–28. doi:10.2165/00002512-199915010-00002 [CrossRef]
  • Mudge, AM, Giebel, AJ & Cutler, AJ2008. Exercising body and mind: An integrated approach to functional independence in hospitalized older people. Journal of the American Geriatrics Society, 56, 630–635. doi:10.1111/j.1532-5415.2007.01607.x [CrossRef]
  • Napoli, M2008. Memory loss and the drugs that can cause it. HealthFacts, 33(6),1–2.
  • Naughton, BJ, Saltzman, S, Ramadan, F, Chadha, N, Priore, R & Mylotte, JM2005. A multifactorial intervention to reduce prevalence of delirium and shorten hospital length of stay. Journal of the American Geriatrics Society, 53, 18–23. doi:10.1111/j.1532-5415.2005.53005.x [CrossRef]
  • Newson, RS & Kemps, EB2006. The influence of physical and cognitive activities on simple and complex cognitive tasks in older adults. Experimental Aging Research, 32, 341–362. doi:10.1080/03610730600699134 [CrossRef]
  • O’Keeffe, ST & Lavan, JN1999. Clinical people. Age and Ageing, 28, 115–119.
  • Pascual-Castroviejo, I1996. Neuronal plasticity. Revista de Neurologia, 24, 1361–1366.
  • Podewils, LJ, Guallar, E, Kuller, LH, Fried, LP, Lopez, OL & Carlson, M et al. .2005. Physical activity, APOE genotype, and dementia risk: Findings from the Cardiovascular Health Cognition Study. American Journal of Epidemiology, 161, 639–651. doi:10.1093/aje/kwi092 [CrossRef]
  • Pompei, P, Foreman, M, Rudberg, MA, Inouye, SK, Braund, V & Cassel, CK1994. Delirium in hospitalized older persons: Outcomes and predictors. Journal of the American Geriatrics Society, 42, 809–815.
  • Rovio, S, Kåreholt, I, Helkala, EL, Viitanen, M, Winblad, B & Tuomilehto, J et al. .2005. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurology, 4, 705–711. doi:10.1016/S1474-4422(05)70198-8 [CrossRef]
  • Rudolph, JL, Salow, MJ, Angelini, MC & McGlinchey, RE2008. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Archives of Internal Medicine, 168, 508–513. doi:10.1001/archinternmed.2007.106 [CrossRef]
  • Scarmeas, N & Stern, Y2003. Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25, 625–633. doi:10.1076/jcen.25.5.625.14576 [CrossRef]
  • Schmand, B, Smit, JH, Geerlings, MI & Lindeboom, J1997. The effects of intelligence and education on the development of dementia. A test of the brain reserve hypothesis. Psychological Medicine, 27, 1337–1344. doi:10.1017/S0033291797005461 [CrossRef]
  • Simons, LA, Simons, J, McCallum, J & Friedlander, Y2006. Lifestyle factors and risk of dementia: Dubbo Study of the elderly. Medical Journal of Australia, 184, 68–70.
  • Stern, Y2002. What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448–460. doi:10.1017/S1355617702813248 [CrossRef]
  • Valenzuela, MJ & Sachdev, P2006. Cognitive leisure activities, but not watching TV, for future brain benefits. Neurology, 67, 729. doi:10.1212/01.wnl.0000239615.49557.63 [CrossRef]
  • van Gelder, BM, Tijhuis, MA, Kalmijn, S, Giampaoli, S, Nissinen, A & Kromhout, D2004. Physical activity in relation to cognitive decline in elderly men: The FINE study. Neurology, 63, 2316–2321.
  • van Praag, H, Kempermann, G & Gage, FH2000. Neural consequences of environmental enrichment. Nature Reviews. Neuroscience, 1, 191–198. doi:10.1038/35044558 [CrossRef]
  • Verghese, J, Lipton, RB, Katz, MJ, Hall, CB, Derby, CA & Kuslansky, G et al. .2003. Leisure activities and the risk of dementia in the elderly. New England Journal of Medicine, 348, 2508–2516. doi:10.1056/NEJMoa022252 [CrossRef]
  • Wang, HX, Karp, A, Winblad, B & Fratiglioni, L2002. Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: A longitudinal study from the Kungsholmen project. American Journal of Epidemiology, 155, 1081–1087. doi:10.1093/aje/155.12.1081 [CrossRef]
  • Wenisch, E, Cantegreil-Kallen, I, De Rotrou, J, Garrigue, P, Moulin, F & Batouche, F et al. .2007. Cognitive stimulation intervention for elders with mild cognitive impairment compared with normal aged subjects: Preliminary results. Aging Clinical and Experimental Research, 19, 316–322.
  • Willis, SL, Tennstedt, SL, Marsiske, M, Ball, K, Elias, J & Koepke, KM et al. .2006. Long-term effects of cognitive training on everyday functional outcomes in older adults. Journal of the American Medical Association, 296, 2805–2814. doi:10.1001/jama.296.23.2805 [CrossRef]
  • Wilson, RS, Mendes de Leon, CF, Barnes, LL, Schneider, JA, Bienias, JL & Evans, DA et al. .2002. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. Journal of the American Medical Association, 287, 742–748. doi:10.1001/jama.287.6.742 [CrossRef]
  • Yang, FM, Inouye, SK, Fearing, MA, Kiely, DK, Marcantonio, ER & Jones, RN2008. Participation in activity and risk for incident delirium. Journal of the American Geriatrics Society, 56, 1479–1484. doi:10.1111/j.1532-5415.2008.01792.x [CrossRef]
  • Yeh, S-C & Liu, Y-Y2003. Influence of social support on cognitive function in the elderly. BMC Health Services Research, 3, 9. doi:10.1186/1472-6963-3-9 [CrossRef]
  • Yu, F, Evans, LK & Sullivan-Marx, EM2005. Functional outcomes for older adults with cognitive impairment in a comprehensive outpatient rehabilitation facility. Journal of the American Geriatrics Society, 53, 1599–1606. doi:10.1111/j.1532-5415.2005.53453.x [CrossRef]
  • Zunzunegui, M-V, Alvarado, BE, Ser, TD & Otero, A2003. Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 58, S93–S100.

Interventions to Enhance Cognitive Reserve

ActivityEvidenceWeb Resources
Physical and social activities

Regular exercise at least twice per week for at least 15 minutes per session

Reduced periods of inactivity (such as long periods of watching television), which increase cognitive decline

Social networking with children, family, and friends

Going to the movies, restaurants, clubs, centers, or sporting events

Productive activity such as daily gardening, housework, cooking, and doing volunteer work

Laurin et al. (2001); Lindstrom et al. (2005); Newson & Kemps (2006); Rovio et al. (2005); Simons et al. (2006); Verghese et al. (2003); Wang et al. (2002); Yang et al. (2008) (delirium specific)AAP: 10 Steps to an Optimal Memoryhttp://www.aarp.org/health/conditions/articles/harvard__improving-memory-understanding-age-related-memory-loss_6.htmlAlzheimer Society of Canada: Healthy Brainhttp://www.alzheimer.ca/english/brain/brain_intro.htmAlzheimer’s Association: Brain Healthhttp://www.alz.org/we_can_help_brain_health_maintain_your_brain.asp
Cognitive stimulation

Leisure activities such as reading books and newspapers, writing for pleasure, doing crosswords and puzzles, playing card and board games, playing musical instruments

Pursuing further education in early life to midlife

Ball et al. (2002); Lyketsos et al. (1999); Verghese et al. (2003); Wilson et al. (2002)About Memory: Mental Stimulationhttp://www.memory-key.com/Seniors/stimulation.htmAmerican Geriatrics Society: Aging in the Knowhttp://www.healthinaging.org/agingintheknow/default.aspHospital Elder Life Program (HELP)http://elderlife.med.yale.edu/public/interventions.php?pageid=01.03.04Keep Your Brain Alivehttp://www.neurobics.com/index.htmlPosit Sciencehttp://www.positscience.com
Avoiding anticholinergic and potentially inappropriate medication use

Providing older adults with a list of medications to avoid because the risks outweigh the benefits, and safer alternatives exist

Providing prescribers and health professionals with tools to identify anticholinergic and inappropriate medication use to distribute with patient handouts

Fick et al. (2003);Hshieh et al. (2008); Rudolph et al. (2008)Duke University’s Potentially Inappropriate Medications for the Elderly According to the Revised Beers Criteriahttp://www.dcri.duke.edu/ccge/curtis/beers.htmlIPRO’s Decreasing Anticholinergic Drugs in the Elderly Projecthttp://providers.ipro.org/index/pres-drug-plan-prescribers

A Nursing Research Agenda for Interventions to Prevent Delirium in Early-Stage Alzheimer’s Disease (AD)

Diagnosis and evaluation of delirium in early-stage AD. Need to refine and test instruments for delirium in early-stage AD. Issues to consider:

Assess overlapping symptoms in delirium and early-stage AD.

Determine factors in early nurse/provider recognition of delirium in AD.

Identify etiology/risk factors unique to delirium in early-stage AD:

Develop models for determining individuals with early-stage AD at highest risk.

Determine factors most amenable to interventions across settings.

Prevention of delirium through enhancement of cognitive reserve. Challenges to address:

Individualization of cognitive activities.

Measuring effect of education and other reserve protective effects on training.

Defining and measuring cognitive reserve as an active mechanism.

Determine components of intervention most effective.

Measurement of trajectory of cognitive decline over time with AD/delirium.

Assess delirium management strategies most effective in early-stage AD.

Evaluate home prevention of delirium.

Intervention methodology and design issues to consider:

Initiation and maintenance of treatment.

Short-term versus long-term effects.

Randomizing patients by clusters rather than as individuals using a cluster randomized controlled trial (RCT) design.

Dosage and duration of intervention/activities.

Use of functional magnetic resonance imaging and biomarkers in assessing outcomes.

Ethical issues to address:

Identify best methods for promoting autonomy and ensuring protection of research, both in informed consent and in the conduct of the study itself, for participants who are at risk of or are experiencing delirium.

Assess decisional capacity of individuals with delirium for both treatment and research consent.

Determine measures for obtaining the most appropriate surrogate informed consent, when necessary.

Assess participants’ understanding of study risk.

Evaluate when and how to notify clinicians of delirium in RCTs.

Establish postdelirium recovery information and counseling.

Translational considerations for delirium interventions in early-stage AD:

Kind of discipline/provider needed to best deliver intervention.

Best ways to facilitate adoption of intervention.

Use of informatics to deliver or enhance components of intervention.

Costing out intervention savings.

Financing of intervention.

Delivery across care settings.

Organizational and leadership characteristics influencing adoption of intervention.

Enhancing Cognitive Reserve

Fick, DM, Kolanowski, A, Beattie, E & McCrow, J. 2009. Delirium in Early-Stage Alzheimer’s Disease: Enhancing Cognitive Reserve as a Possible Preventive Measure. Journal of Gerontological Nursing, 35(3), 30–38.

  1. As growing numbers of older adults are diagnosed at earlier stages of Alzheimer’s disease (AD) and related dementias, attention to preventable and treatable problems such as delirium are crucial to the care of individuals with dementia.

  2. Delirium and dementia are increasingly known to be closely connected; thus, interventions that are protective for dementia may also help prevent delirium or reduce its severity.

  3. One possible mechanism for delirium prevention in early-stage AD is the enhancement of cognitive reserve. Those interventions that have the strongest links to improving cognitive reserve in individuals with dementia include physical activity, social interaction, challenging mental activities, and avoidance of anticholinergic and inappropriate medication use.

Authors

Dr. Fick is Associate Professor of Nursing, and Dr. Kolanowski is Elouise Ross Eberly Professor of Nursing, School of Nursing, The Pennsylvania State University, University Park, Pennsylvania; Dr. Beattie is Director, Dementia Collaborative Research Centre, School of Nursing, Queensland University of Technology, and Ms. McCrow is a Research Officer and PhD candidate, Dementia Collaborative Research Centre, Queensland University of Technology, School of Nursing, Brisbane, Queensland, Australia.

Address correspondence to Donna M. Fick, PhD, GCNS-BC, Associate Professor of Nursing, School of Nursing, The Pennsylvania State University, 201 Health and Human Development East, University Park, PA 16802; e-mail: .dmf21@psu.edu

10.3928/00989134-20090301-06

Sign up to receive

Journal E-contents