Julie Kim Stamos, MD, has organized and edited this issue of Pediatric Annals very well, and it includes nice review articles related to fever in childhood. Although some aspects of the febrile child have changed little over time, others, such as periodic fever syndromes, are evolving relatively rapidly while new genetic causes are discovered or new therapies developed. These articles are well-written and packed with clinical pearls.

This issue of Pediatric Annals also marks the beginning of the 40th volume of this journal. Pediatric Annals was launched almost 40 years ago, under the editorship of Milton I. Levine, MD, who had served on the faculty of Cornell University Medical College since 1933 (also almost 40 years).

The first two issues were devoted to neonatology in October and November 1972. Dr. Levine established the policy that each issue of Pediatric Annals "would devote itself to an up-to-date discussion on one subject of importance to pediatricians." The field of neonatology was truly in its infancy (no pun) 40 years ago. I can recall as a medical student and resident in the mid-to-late 1960s what novelties the few ventilators in the nursery were.

The titles of the papers in the first issue of Pediatric Annals, entitled "The Low Birth Weight Baby" were "An Overview of LBW's;" "Physiologic and Clinical Considerations of Blood Disorders;" "Later Development and Follow-up;" and "Special Care — the High Risk Newborn." They stand as a record of the state of this field 40 years ago.

So I asked Robin Steinhorn, MD, Chief of Neonatology at Children’s Memorial Hospital in Chicago, what she considers the most important advances in neonatology over the past 40 years. She cited the following:

1. **Antenatal steroids and postnatal surfactant therapy** leading to the routine survival of extremely low birth weight (ELBW) babies, with reduction of neonatal mortality, respiratory distress syndrome, and intraventricular hemorrhage. Antenatal steroids induce maturation of virtually all organ systems, leading to prevention of bronchopulmonary dysplasia (BPD) and increasing survival. The tradeoff related to antenatal steroids is the risk of neurologic sequelae among ELBW survivors.

2. **Inhaled nitric oxide for the treatment of neonatal respiratory failure** by decreasing pulmonary resistance and promoting pulmonary artery vaso-dilation and increasing oxygenation, thus preventing the need for extracorporeal membrane oxygenation (ECMO).
3. **Brain cooling for neuroprotection** and minimizing consequences of neonatal encephalopathy from asphyxia, with reduction in adverse neurologic outcomes.

4. **Fetal diagnostics**, including radiologic studies (fetal ultrasound, MRI, etc.), genetic analysis (eg, cystic fibrosis and many others), and fetoscopy. It is now possible to establish prenatal diagnoses of many major congenital anomalies and to plan interventions as needed in the prenatal period, during birth, or immediately after delivery.

To accompany this column, we are displaying a set of six recent British stamps issued on September 16, 2010, which celebrate six scientists from the UK and their major medical discoveries.

The dark stamp with the red EKG tracing (see page 3) honors the synthesis of the beta-blocker class of drugs for the management of cardiac arrhythmias and hypertension by Sir James Black (1924-2010) in 1962. Black was a Scottish physician and pharmacologist who received the Nobel Prize in Physiology or Medicine in 1988 for this discovery. He also developed cimetidine, the first H₃-receptor antagonist for peptic ulcers.

Sir Alexander Fleming’s (1881-1955) well-known discovery in 1928 of the antibacterial effect of penicillin is honored by the 58-penny stamp (see page 3), for which he received the 1945 Nobel in Physiology or Medicine.

The invention of the CT scanner in 1971 by Sir Godfrey Hounsfield (1919-2004), an English electrical engineer, is honored by the 97-penny stamp that shows an abdominal CT scan.

The apparently parasitized red blood cell on the 88-penny stamp honors the discovery by Sir Ronald Ross (1857-1932) that malaria was transmitted by mosquitoes. This British bacteriologist won the 1902 Nobel Prize in Physiology or Medicine for elucidating the malaria life cycle.

Finally, the invention of the CT scanner in 1971 by Sir Godfrey Hounsfield (1919-2004), an English electrical engineer, is honored by the 97-penny stamp that shows an abdominal CT scan. Hounsfield shared the 1979 Nobel Prize in Physiology or Medicine with Allan M. Cormack (1924-1998), a South African-born American high energy physicist.

doi: 10.3928/00904481-20101221-01